The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193127 Numbers of spanning trees of the antiprism graphs. 0
 2, 36, 384, 3528, 30250, 248832, 1989806, 15586704, 120187008, 915304500, 6900949462, 51599794176, 383142771674, 2828107288188, 20768716848000, 151840963183392, 1105779284582146, 8024954790380544, 58059628319357318, 418891171182561000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Antiprism graphs are defined for n>=3; extended to n=1 using closed form. LINKS Eric Weisstein's World of Mathematics, Antiprism Graph Eric Weisstein's World of Mathematics, Spanning Tree Index entries for linear recurrences with constant coefficients, signature (16, -80, 130, -80, 16, -1). FORMULA a(n) = 2/5*n*(phi^(4*n) + phi^(-4*n) - 2), where phi is the golden ratio. a(n) = +16*a(n-1)-80*a(n-2)+130*a(n-3)-80*a(n-4)+16*a(n-5)-a(n-6). O.g.f.: (2*x*(1 + 2*x - 16*x^2 + 2*x^3 + x^4))/((-1 + x)^2*(1 - 7*x + x^2)^2). 5*a(n) = 2*n*(A056854(n) - 2). - Eric W. Weisstein, Mar 28 2018 MATHEMATICA Table[2 n (GoldenRatio^(4 n) + GoldenRatio^(-4 n) - 2)/5, {n, 20}] // Round LinearRecurrence[{16, -80, 130, -80, 16, -1}, {2, 36, 384, 3528, 30250, 248832}, 20] CoefficientList[Series[(2 (1 + 2 x - 16 x^2 + 2 x^3 + x^4))/((-1 + x)^2 (1 - 7 x + x^2)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 28 2018 *) Table[2 n (LucasL[4 n] - 2)/5, {n, 20}] (* Eric W. Weisstein, Mar 28 2018 *) PROG (PARI) a(n)=my(x=quadgen(5)^n); real(2*n*(x^4+x^-4-2)/5) \\ Charles R Greathouse IV, Dec 17 2013 CROSSREFS Sequence in context: A157055 A057407 A286266 * A092852 A139738 A248343 Adjacent sequences:  A193124 A193125 A193126 * A193128 A193129 A193130 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, Jul 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 28 11:24 EDT 2022. Contains 354905 sequences. (Running on oeis4.)