login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of spanning trees of the Andrásfai graphs.
2

%I #35 Feb 09 2024 03:59:01

%S 1,5,392,130691,116268789,217138318913,735586507699560,

%T 4097541199291485383,34978630555104539011865,

%U 433956321312627533863411229,7507648403517784836450716354400,175224359120863022267621776711423115,5369536232535958477000676021964993713773

%N Numbers of spanning trees of the Andrásfai graphs.

%C Is it obvious that, beyond the prime a(2) = 5, all values shown are not squarefree (i.e., in A013929). For example, a(10) = 29 * 59^2 * 65564989939^2. - _Jonathan Vos Post_, Jul 16 2011

%H Alois P. Heinz, <a href="/A193126/b193126.txt">Table of n, a(n) for n = 1..100</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AndrasfaiGraph.html">Andrásfai Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a>

%p with(LinearAlgebra):

%p a:= proc(n) local h, i, M, m;

%p m:= 3*n-1;

%p M:= Matrix(m, shape=symmetric);

%p for h in [seq(seq(`if`(irem(j-i, 3)=1, [i,j], NULL),

%p i=1..j-1), j=2..m)]

%p do M[h[]]:= -1 od;

%p for i to m do M[i, i]:= -add(M[i, j], j=1..m) od;

%p Determinant(DeleteColumn(DeleteRow(M, 1), 1))

%p end:

%p seq(a(n), n=1..20); # _Alois P. Heinz_, Jul 18 2011

%t a[n_] := Module[{M, m = 3n-1}, M[_, _] = 0; Do[M[Sequence @@ h] = -1, {h, Flatten[Table[Table[If[Mod[j - i, 3] == 1, {i, j}, Nothing], {i, 1, j - 1}], {j, 2, m}], 1]}]; For[i = 1, i <= m, i++, M[i, i] = -Sum[If[j >= i, M[i, j], M[j, i]], {j, 1, m}]]; Det[Table[If[j >= i, M[i, j], M[j, i]], {i, 2, m}, {j, 2, m}]]];

%t Array[a, 20](* _Jean-François Alcover_, Nov 12 2020, after _Alois P. Heinz_ *)

%K nonn

%O 1,2

%A _Eric W. Weisstein_, Jul 16 2011

%E More terms from _Alois P. Heinz_, Jul 18 2011