OFFSET
1,2
COMMENTS
The sequence of 2nd, 4th and following terms coincides with A006556, which gives the "number of different cycles of digits in the decimal expansions of 1/p, 2/p, ..., (p-1)/p where p = n-th prime different from 2 or 5".
LINKS
Carmine Suriano and T. D. Noe, Table of n, a(n) for n = 1..10000 (first 101 terms from Carmine Suriano)
FORMULA
EXAMPLE
a(13) = 40/5 = 8, since 41 is the 13th prime and the periodic part of 1/41 = 0.02439024390... consists of 5 digits.
MATHEMATICA
Join[{1, 2, 4}, Table[p = Prime[n]; (p - 1)/Length[RealDigits[1/p, 10][[1, 1]]], {n, 4, 100}]] (* T. D. Noe, Oct 04 2012 *)
PROG
(Python) from sympy import prime, n_order
def A060370(n): return 1 if n == 1 or n == 3 else n_order(10, prime(n))
print([(prime(n)-1)//A060370(n) for n in range(1, 86)]) # Karl-Heinz Hofmann, Mar 16 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Klaus Brockhaus, Apr 01 2001
STATUS
approved