login
A060372
p(n), positive part of n when n=p(n)-q(n) with p(n), q(n), p(n)+q(n) in A005836, integers written without 2 in base 3.
5
0, 1, 3, 3, 4, 9, 9, 10, 9, 9, 10, 12, 12, 13, 27, 27, 28, 27, 27, 28, 30, 30, 31, 27, 27, 28, 27, 27, 28, 30, 30, 31, 36, 36, 37, 36, 36, 37, 39, 39, 40, 81, 81, 82, 81, 81, 82, 84, 84, 85, 81, 81, 82, 81, 81, 82, 84, 84, 85, 90, 90, 91, 90, 90, 91, 93, 93, 94, 81, 81, 82, 81
OFFSET
0,3
COMMENTS
The graphs of p(n), q(n) are fractals; the graph of p(n)+q(n) is SierpiƄski-like.
LINKS
EXAMPLE
Example: 14=27-13=3^3 -(3^0+3^1+3^2), 16=28-12=3^3+3^0 -(3^1+3^2), 20=30-10=3^3+3^1 -(3^0+3^2); 27+13=28+12=30+10=40; 10,12,13, 27, 28, 30 are written without 2 in base 3.
PROG
(Haskell)
a060372 n = (a060374 n + n) `div` 2 -- Reinhard Zumkeller, Jun 09 2012
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Claude Lenormand (claude.lenormand(AT)free.fr), Apr 02 2001
STATUS
approved