login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165064
Number of cycles of n-digit numbers (including fixed points) under the base-6 Kaprekar map A165051.
11
1, 0, 1, 1, 2, 4, 1, 5, 2, 7, 3, 9, 4, 13, 7, 17, 8, 24, 11, 30, 16, 37, 21, 46, 27, 57, 34, 68, 42, 83, 52, 96, 64, 113, 77, 132, 90, 153, 107, 175, 125, 200, 145, 226, 168, 256, 191, 288, 217, 323, 247, 358, 278, 399, 312, 441, 348, 487, 387, 536, 429, 587, 475, 641
OFFSET
1,5
LINKS
H. Hanslik, E. Hetmaniok, I. Sobstyl, et al., Orbits of the Kaprekar's transformations-some introductory facts, Zeszyty Naukowe Politechniki Śląskiej, Seria: Matematyka Stosowana z. 5, Nr kol. 1945; 2015.
FORMULA
G.f.: x*(1 + x + 2*x^5 - 2*x^7 - 3*x^8 - 3*x^9 - x^10 + 2*x^11 + 4*x^12 + 4*x^13 + 4*x^14 + x^15 - 3*x^16 - 3*x^17 - 2*x^18 - x^19 + x^21 + x^22) / ((1 - x)^4*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)) (conjectured). - Colin Barker, Jun 01 2017
CROSSREFS
In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A165006 (base 3), A165025 (base 4), A165045 (base 5), A165084 (base 7), A165103 (base 8), A165123 (base 9), A164731 (base 10).
Sequence in context: A303977 A060370 A318704 * A299918 A021418 A283741
KEYWORD
base,nonn
AUTHOR
Joseph Myers, Sep 04 2009
STATUS
approved