login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059287
Primes p such that x^16 = 2 has no solution mod p, but x^8 = 2 has a solution mod p.
3
1217, 1249, 1553, 1777, 2833, 4049, 4273, 4481, 4993, 5297, 6449, 6481, 6689, 7121, 8081, 8609, 9137, 9281, 9649, 10337, 10369, 10433, 11329, 11617, 11633, 12241, 12577, 13121, 13441, 13633, 14321, 14753, 15121, 15569, 16417, 16433, 16673
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[PrimePi[20000]]], !MemberQ[PowerMod[Range[#], 16, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 8, #], Mod[2, #]]&] (* Vincenzo Librandi, Sep 21 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(17000) | not exists{x: x in ResidueClassRing(p) | x^16 eq 2} and exists{x: x in ResidueClassRing(p) | x^8 eq 2}]; // Vincenzo Librandi, Sep 21 2012
(PARI) select( {is_A059287(p)=Mod(2, p)^(p\gcd(8, p-1))==1&&Mod(2, p)^(p\gcd(16, p-1))!=1}, primes(1999)) \\ Could any composite number pass this test? - M. F. Hasler, Jun 22 2024
(Python)
from itertools import islice
from sympy import is_nthpow_residue, nextprime
def A059287_gen(startvalue=2): # generator of terms >= startvalue
p = max(1, startvalue-1)
while (p:=nextprime(p)):
if is_nthpow_residue(2, 8, p) and not is_nthpow_residue(2, 16, p):
yield p
A059287_list = list(islice(A059287_gen(), 10)) # Chai Wah Wu, Jun 23 2024
CROSSREFS
Cf. A070184 (same with x^64 instead of x^16).
Sequence in context: A331625 A235889 A321062 * A225759 A059669 A032628
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jan 25 2001
STATUS
approved