login
A059287
Primes p such that x^16 = 2 has no solution mod p, but x^8 = 2 has a solution mod p.
3
1217, 1249, 1553, 1777, 2833, 4049, 4273, 4481, 4993, 5297, 6449, 6481, 6689, 7121, 8081, 8609, 9137, 9281, 9649, 10337, 10369, 10433, 11329, 11617, 11633, 12241, 12577, 13121, 13441, 13633, 14321, 14753, 15121, 15569, 16417, 16433, 16673
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[PrimePi[20000]]], !MemberQ[PowerMod[Range[#], 16, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 8, #], Mod[2, #]]&] (* Vincenzo Librandi, Sep 21 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(17000) | not exists{x: x in ResidueClassRing(p) | x^16 eq 2} and exists{x: x in ResidueClassRing(p) | x^8 eq 2}]; // Vincenzo Librandi, Sep 21 2012
(PARI) select( {is_A059287(p)=Mod(2, p)^(p\gcd(8, p-1))==1&&Mod(2, p)^(p\gcd(16, p-1))!=1}, primes(1999)) \\ Could any composite number pass this test? - M. F. Hasler, Jun 22 2024
(Python)
from itertools import islice
from sympy import is_nthpow_residue, nextprime
def A059287_gen(startvalue=2): # generator of terms >= startvalue
p = max(1, startvalue-1)
while (p:=nextprime(p)):
if is_nthpow_residue(2, 8, p) and not is_nthpow_residue(2, 16, p):
yield p
A059287_list = list(islice(A059287_gen(), 10)) # Chai Wah Wu, Jun 23 2024
CROSSREFS
Cf. A070184 (same with x^64 instead of x^16).
Sequence in context: A331625 A235889 A321062 * A225759 A059669 A032628
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jan 25 2001
STATUS
approved