login
A331625
Numbers k such that both k and k+1 are exceptional (A072066).
0
1215, 98415, 273375, 413343, 846368, 1987983, 2302911, 6082047, 6200144, 8089712, 9034496, 9861183, 11868848, 13010463, 13325391, 13955247, 16159743, 16592768, 17537552, 18482336, 20686832, 20883663, 21198591, 22143375, 22891328, 23206256, 24347871, 25607583
OFFSET
1,1
COMMENTS
Conjecture: for every p > 0, there exist infinitely many k such that k, k+1, ..., k+p-1 are all exceptional numbers. In specific, there exist infinitely many k such that both k and k+1 are exceptional.
EXAMPLE
1215 = 3^5 * 5, 1216 = 2^6 * 19;
thus A037019(1215) = 2^4 * 3^2 * 5^2 * 7^2 * 11^2 * 13^2 = 3607203600, A037016(1216) = 2^18 * 3 * 5 * 7 * 11 * 13 * 17 = 66913566720;
but the smallest number with 1215 divisors is 3073593600 = 2^8 * 3^4 * 5^2 * 7^2 * 11^2, the smallest number with 1216 divisors is 35424829440 = 2^18 * 3^3 * 5 * 7 * 11 * 13;
so both 1215 and 1216 are exceptional, so 1215 is a term.
PROG
(PARI) isA331625(n) = A037019(n+1) > A005179(n+1) && A037019(n) > A005179(n) \\ See A037019 and A005179 for their programs. Warning: this is extremely inefficient
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Jan 22 2020
EXTENSIONS
More terms from Jinyuan Wang, Jan 21 2025
STATUS
approved