OFFSET
1,1
COMMENTS
Numbers k that have 2 distinct proper divisors, d_1 and d_2, such that sigma(k) = 2*k - (d_1 + d_2). - Amiram Eldar, Dec 29 2024
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1000
FengJuan Chen, On Exactly k-deficient-perfect Numbers, Integers, 19 (2019), Article A37, 1-9.
EXAMPLE
117 is an exactly 2-deficient-perfect number with d1=13 and d2=39: sigma(117) = 182 = 2*117 - (13 + 39). See Theorem 1 p. 2 of FengJuan Chen.
MATHEMATICA
def2[n_] := Catch@Block[{s = 2*n - DivisorSigma[1, n], d}, If[s > 0, d = Most@ Divisors@ n; Do[If[s == d[[i]] + d[[j]], Throw@ True], {i, 2, Length@ d}, {j, i-1}]; False]]; Select[Range[2500], def2] (* Giovanni Resta, Jan 23 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 23 2020
EXTENSIONS
More terms from Giovanni Resta, Jan 23 2020
STATUS
approved