login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A331628
Integers that are exactly 2-deficient-perfect numbers.
3
15, 21, 45, 50, 52, 63, 75, 99, 105, 117, 135, 182, 190, 195, 230, 231, 266, 273, 315, 375, 405, 435, 495, 585, 592, 656, 688, 850, 891, 950, 1155, 1215, 1305, 1365, 1395, 1612, 1755, 1845, 1862, 1875, 1892, 1989, 2079, 2295, 2312, 2332, 2336, 2350, 2366, 2475
OFFSET
1,1
COMMENTS
Numbers k that have 2 distinct proper divisors, d_1 and d_2, such that sigma(k) = 2*k - (d_1 + d_2). - Amiram Eldar, Dec 29 2024
LINKS
FengJuan Chen, On Exactly k-deficient-perfect Numbers, Integers, 19 (2019), Article A37, 1-9.
EXAMPLE
117 is an exactly 2-deficient-perfect number with d1=13 and d2=39: sigma(117) = 182 = 2*117 - (13 + 39). See Theorem 1 p. 2 of FengJuan Chen.
MATHEMATICA
def2[n_] := Catch@Block[{s = 2*n - DivisorSigma[1, n], d}, If[s > 0, d = Most@ Divisors@ n; Do[If[s == d[[i]] + d[[j]], Throw@ True], {i, 2, Length@ d}, {j, i-1}]; False]]; Select[Range[2500], def2] (* Giovanni Resta, Jan 23 2020 *)
CROSSREFS
Cf. A000203 (sigma), A271816 (deficient-perfect numbers (k=1)), A331627 (k-deficient-perfect), A331629 (3-deficient-perfect).
Sequence in context: A063175 A367103 A325658 * A171569 A247021 A334117
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 23 2020
EXTENSIONS
More terms from Giovanni Resta, Jan 23 2020
STATUS
approved