OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(x)^2 * chi(x^2) * chi(x^4)^2 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Oct 25 2013
Contribution from Michael Somos, Aug 08 2012 (Start)
Expansion of f(x) * f(x^4) / (f(-x) * f(-x^16)) = psi(x) * psi(x^4) / (psi(-x) * psi(x^8)) = chi(x) * chi(x^4) * chi(-x^8) / chi(-x) = (phi(x) * phi(x^4) / (phi(-x) * psi(x^8)))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/2) * (eta(q^2) * eta(q^8))^3 / (eta(q) * eta(q^4) * eta(q^16))^2 in powers of q.
Euler transform of period 16 sequence [ 2, -1, 2, 1, 2, -1, 2, -2, 2, -1, 2, 1, 2, -1, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = f(t) where q = exp(2 Pi i t).
Convolution square is A214035. (end)
Expansion of psi(-x^2)^2 / (phi(-x) * psi(x^8)) = phi(x) * phi(x^4) / psi(-x^2)^2 in powers of x. - Michael Somos, Dec 14 2014
a(n) ~ exp(Pi*sqrt(n/2)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 7*x^4 + 10*x^5 + 14*x^6 + 20*x^7 + 27*x^8 + ...
T32B = 1/q + 2*q + 2*q^3 + 4*q^5 + 7*q^7 + 10*q^9 + 14*q^11 + 20*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^2 QPochhammer[ -x^4, x^4] / (QPochhammer[-x^2, x^2] QPochhammer[-x^8, x^8]^2), {x, 0, n}]; (* Michael Somos, Oct 25 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^2 QPochhammer[ -x^2, x^4] QPochhammer[ -x^4, x^8]^2, {x, 0, n}]; (* Michael Somos, Dec 14 2014 *)
nmax = 50; CoefficientList[Series[Product[((1-x^(2*k)) * (1-x^(8*k)))^3 / ((1-x^k) * (1-x^(4*k)) * (1-x^(16*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^8 + A))^3 / (eta(x + A) * eta(x^4 + A) * eta(x^16 + A))^2, n))}; /* Michael Somos, Aug 08 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved