login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058630
McKay-Thompson series of class 32B for the Monster group.
2
1, 2, 2, 4, 7, 10, 14, 20, 27, 36, 50, 64, 84, 110, 140, 180, 229, 288, 360, 452, 560, 692, 854, 1044, 1275, 1554, 1884, 2276, 2745, 3296, 3950, 4724, 5630, 6696, 7946, 9408, 11115, 13108, 15422, 18112, 21238, 24850, 29034, 33864, 39429, 45844, 53224, 61696
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(x)^2 * chi(x^2) * chi(x^4)^2 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Oct 25 2013
Contribution from Michael Somos, Aug 08 2012 (Start)
Expansion of f(x) * f(x^4) / (f(-x) * f(-x^16)) = psi(x) * psi(x^4) / (psi(-x) * psi(x^8)) = chi(x) * chi(x^4) * chi(-x^8) / chi(-x) = (phi(x) * phi(x^4) / (phi(-x) * psi(x^8)))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/2) * (eta(q^2) * eta(q^8))^3 / (eta(q) * eta(q^4) * eta(q^16))^2 in powers of q.
Euler transform of period 16 sequence [ 2, -1, 2, 1, 2, -1, 2, -2, 2, -1, 2, 1, 2, -1, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = f(t) where q = exp(2 Pi i t).
Convolution square is A214035. (end)
Expansion of psi(-x^2)^2 / (phi(-x) * psi(x^8)) = phi(x) * phi(x^4) / psi(-x^2)^2 in powers of x. - Michael Somos, Dec 14 2014
a(n) ~ exp(Pi*sqrt(n/2)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 7*x^4 + 10*x^5 + 14*x^6 + 20*x^7 + 27*x^8 + ...
T32B = 1/q + 2*q + 2*q^3 + 4*q^5 + 7*q^7 + 10*q^9 + 14*q^11 + 20*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^2 QPochhammer[ -x^4, x^4] / (QPochhammer[-x^2, x^2] QPochhammer[-x^8, x^8]^2), {x, 0, n}]; (* Michael Somos, Oct 25 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^2 QPochhammer[ -x^2, x^4] QPochhammer[ -x^4, x^8]^2, {x, 0, n}]; (* Michael Somos, Dec 14 2014 *)
nmax = 50; CoefficientList[Series[Product[((1-x^(2*k)) * (1-x^(8*k)))^3 / ((1-x^k) * (1-x^(4*k)) * (1-x^(16*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^8 + A))^3 / (eta(x + A) * eta(x^4 + A) * eta(x^16 + A))^2, n))}; /* Michael Somos, Aug 08 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved