Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Mar 12 2021 22:24:42
%S 1,2,2,4,7,10,14,20,27,36,50,64,84,110,140,180,229,288,360,452,560,
%T 692,854,1044,1275,1554,1884,2276,2745,3296,3950,4724,5630,6696,7946,
%U 9408,11115,13108,15422,18112,21238,24850,29034,33864,39429,45844,53224,61696
%N McKay-Thompson series of class 32B for the Monster group.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A058630/b058630.txt">Table of n, a(n) for n = 0..1000</a>
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Comm. Algebra 22, No. 13, 5175-5193 (1994).
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F Expansion of chi(x)^2 * chi(x^2) * chi(x^4)^2 in powers of x where chi() is a Ramanujan theta function. - _Michael Somos_, Oct 25 2013
%F Contribution from _Michael Somos_, Aug 08 2012 (Start)
%F Expansion of f(x) * f(x^4) / (f(-x) * f(-x^16)) = psi(x) * psi(x^4) / (psi(-x) * psi(x^8)) = chi(x) * chi(x^4) * chi(-x^8) / chi(-x) = (phi(x) * phi(x^4) / (phi(-x) * psi(x^8)))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
%F Expansion of q^(1/2) * (eta(q^2) * eta(q^8))^3 / (eta(q) * eta(q^4) * eta(q^16))^2 in powers of q.
%F Euler transform of period 16 sequence [ 2, -1, 2, 1, 2, -1, 2, -2, 2, -1, 2, 1, 2, -1, 2, 0, ...].
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = f(t) where q = exp(2 Pi i t).
%F Convolution square is A214035. (end)
%F Expansion of psi(-x^2)^2 / (phi(-x) * psi(x^8)) = phi(x) * phi(x^4) / psi(-x^2)^2 in powers of x. - _Michael Somos_, Dec 14 2014
%F a(n) ~ exp(Pi*sqrt(n/2)) / (2^(7/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 10 2015
%e G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 7*x^4 + 10*x^5 + 14*x^6 + 20*x^7 + 27*x^8 + ...
%e T32B = 1/q + 2*q + 2*q^3 + 4*q^5 + 7*q^7 + 10*q^9 + 14*q^11 + 20*q^13 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^2 QPochhammer[ -x^4, x^4] / (QPochhammer[-x^2, x^2] QPochhammer[-x^8, x^8]^2), {x, 0, n}]; (* _Michael Somos_, Oct 25 2013 *)
%t a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^2 QPochhammer[ -x^2, x^4] QPochhammer[ -x^4, x^8]^2, {x, 0, n}]; (* _Michael Somos_, Dec 14 2014 *)
%t nmax = 50; CoefficientList[Series[Product[((1-x^(2*k)) * (1-x^(8*k)))^3 / ((1-x^k) * (1-x^(4*k)) * (1-x^(16*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 10 2015 *)
%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^8 + A))^3 / (eta(x + A) * eta(x^4 + A) * eta(x^16 + A))^2, n))}; /* _Michael Somos_, Aug 08 2012 */
%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.
%Y Cf. A214035.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Nov 27 2000