login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057459 a(n+1) = smallest prime p in the range a(n) < p < a(1)*a(2)*...*a(n) such that p-1 divides a(1)*a(2)*...*a(n); or if no such prime p exists, then a(n+1) = smallest prime > a(n). 3
2, 3, 5, 7, 11, 23, 31, 43, 47, 67, 71, 139, 211, 283, 311, 331, 431, 463, 659, 683, 691, 863, 947, 967, 1291, 1303, 1319, 1367, 1427, 1699, 1867, 1979, 1987, 2011, 2111, 2131, 2311, 2531, 3011, 3083, 4099, 4423, 4643, 4691, 4831, 5171, 5179, 5683, 5839 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..10000

EXAMPLE

a(3) = 5. Since the product of a(1)*a(2) is 6, there is no prime p < 6 such that p-1 | 6 so the next prime greater than a(2) is 5.

a(9) = 47 since 46 (2*23) | 2*3*5*7*11*23*31*43.

MAPLE

with(numtheory): a:=[2]; P:=1; j:=1;

for n from 2 to 36 do

sw:=-1; P:=P*a[n-1];

  for i from j+1 to 1000 do

  if (ithprime(i)<P) and (P mod (ithprime(i)-1)) = 0 then Q:=ithprime(i); j:=i; sw:=1; break; fi;

                       od:

if sw=-1 then Q:=nextprime(a[n-1]); j:=pi(Q); fi;

a:=[op(a), Q];

od:

a; # N. J. A. Sloane, Feb 13 2017

MATHEMATICA

f[s_List] := Block[{b = Times @@ s, p = NextPrime@ Sort[s][[-1]]}, While[ Mod[b, p -1] > 0 && p < b, p = NextPrime@ p]; If[p > b, p = 2; While[ MemberQ[s, p], p = NextPrime@ p]]; Append[s, p]];; Nest[ f, {2}, 50] (* and modified by Robert G. Wilson v, Feb 13 2017 *)

CROSSREFS

Cf. A007459. See A282027 for another version.

Sequence in context: A094318 A019344 A229291 * A068853 A236400 A288371

Adjacent sequences:  A057456 A057457 A057458 * A057460 A057461 A057462

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Sep 26 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 22:40 EDT 2018. Contains 313782 sequences. (Running on oeis4.)