login
A057461
Numbers k such that x^k + x^3 + 1 is irreducible over GF(2).
4
1, 2, 4, 5, 6, 7, 10, 12, 17, 18, 20, 25, 28, 31, 41, 52, 66, 130, 151, 180, 196, 503, 650, 761, 986, 1391, 1596, 2047, 2700, 4098, 6172, 6431, 6730, 8425, 10162, 11410, 12071, 13151, 14636, 17377, 18023, 30594, 32770, 65538, 77047, 81858, 102842, 130777, 137113, 143503, 168812, 192076, 262146
OFFSET
1,2
COMMENTS
Next term is > 10^5. - Joerg Arndt, Apr 28 2012
It seems that if x^k + x^3 + 1 is irreducible and k is not a multiple of 6, then so is x^k + x^3 + x^2 + x + 1. If this is true, then no term can be congruent to 3 modulo 6. - Jianing Song, May 11 2021
Any subsequent terms are > 300000. - Lucas A. Brown, Nov 28 2022
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), section 40.9.3 "Irreducible trinomials of the form 1 + x^k + x^d", p. 850
Lucas A. Brown, Python program.
Lucas A. Brown, Sage program.
PROG
(PARI)
for (n=1, 5000, if ( polisirreducible(Mod(1, 2)*(x^n+x^3+1)), print1(n, ", ") ) );
/* Joerg Arndt, Apr 28 2012 */
(Sage)
P.<x> = GF(2)[]
for n in range(10^4):
if (x^n+x^3+1).is_irreducible():
print(n) # Joerg Arndt, Apr 28 2012
CROSSREFS
Sequence in context: A129132 A191843 A318606 * A070116 A246965 A300861
KEYWORD
nonn,hard
AUTHOR
Robert G. Wilson v, Sep 27 2000
EXTENSIONS
a(24)-a(29) from Robert G. Wilson v, Aug 06 2010
Terms >= 4098 from Joerg Arndt, Apr 28 2012
a(47)-a(53) from Lucas A. Brown, Nov 28 2022
STATUS
approved