login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236400
Primes p=prime(k) such that min{r_p, p-r_p} <= 2, where r_p = A100612(k).
1
2, 3, 5, 7, 11, 23, 31, 67, 227, 373, 10331, 274453
OFFSET
1,1
COMMENTS
No further terms < 5*10^6. - Michael S. Branicky, Jan 03 2022
LINKS
Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv preprint arXiv:1312.7037 [math.NT], 2013-2014.
Miodrag Zivkovic, The number of primes sum_{i=1..n} (-1)^(n-i)*i! is finite, Math. Comp. 68 (1999), pp. 403-409.
MAPLE
A100612 := proc(n)
local p, lf, kf, k ;
p := ithprime(n) ;
lf := 1 ;
kf := 1 ;
for k from 1 to p-1 do
kf := modp(kf*k, p) ;
lf := lf+modp(kf, p) ;
end do:
lf mod p ;
end proc:
for n from 1 do
p := ithprime(n) ;
rp := A100612(n) ;
prp := p-rp ;
if min(rp, prp) <= 2 then
print(p) ;
end if;
end do: # R. J. Mathar, Feb 17 2014
MATHEMATICA
A100612[n_] := Module[{p = Prime[n], lf = 1, kf = 1, k}, For[k = 1, k <= p - 1, k++, kf = Mod[kf*k, p]; lf = lf + Mod[kf, p]]; Mod[lf, p]];
Reap[For[n = 1, n < 40000, n++, p = Prime[n]; rp = A100612[n]; If[Min[rp, p - rp] <= 2, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 05 2017, after R. J. Mathar *)
PROG
(Python)
from sympy import isprime
def afind(limit):
f = 1 # (p-1)!
s = 2 # sum(0! + 1! + ... + (p-1)!)
for p in range(2, limit+1):
if isprime(p):
r_p = s%p
if min(r_p, p-r_p) <= 2:
print(p, end=", ")
s += f*p
f *= p
afind(11000) # Michael S. Branicky, Jan 03 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Jan 29 2014
EXTENSIONS
a(12) from Jean-François Alcover, Dec 05 2017
STATUS
approved