|
|
A030284
|
|
a(n) is the least prime > a(n-1) whose digits do not appear in a(n-1).
|
|
10
|
|
|
2, 3, 5, 7, 11, 23, 41, 53, 61, 73, 89, 101, 223, 401, 523, 601, 727, 809, 1117, 2003, 4111, 5003, 6121, 7039, 8111, 9007, 11113, 20029, 31147, 50069, 71143, 80209, 111143, 200009, 311111, 400009, 511111, 600043, 711121, 800053, 911111, 2000003, 4111147, 5000263, 7111199, 8000023, 9111161
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sequence is infinite. - T. D. Noe, Jun 06 2007
a(n) may never have all of the 4 digits 1, 3, 7, 9: if a(n) has 3 of these digits then a(n+1) ends with the fourth one. - Pierre CAMI, May 06 2011
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..500
|
|
MATHEMATICA
|
ta={1}; Do[s1=IntegerDigits[Part[ta, Length[ta]]]; s2=IntegerDigits[Prime[n]]; If[Equal[Intersection[s1, s2], {}], Print[{Prime[n], Prime[n+1]}]; ta=Append[ta, Prime[n]]], {n, 1, 1000000}]; ta=Delete[ta, 1] (* Labos Elemer, Nov 18 2004 *)
|
|
PROG
|
(Haskell)
import Data.List (intersect)
a030284 n = a030284_list !! (n-1)
a030284_list = f [] a000040_list where
f xs (p:ps) = if null $ intersect xs ys then p : f ys ps else f xs ps
where ys = show p
-- Reinhard Zumkeller, Sep 21 2013
|
|
CROSSREFS
|
Cf. A030283, A229364, A000040.
Sequence in context: A236400 A288371 A158217 * A252791 A068148 A036344
Adjacent sequences: A030281 A030282 A030283 * A030285 A030286 A030287
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Patrick De Geest
|
|
EXTENSIONS
|
More terms from Labos Elemer, Nov 18 2004
|
|
STATUS
|
approved
|
|
|
|