login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030284 a(n) is the least prime > a(n-1) whose digits do not appear in a(n-1). 10
2, 3, 5, 7, 11, 23, 41, 53, 61, 73, 89, 101, 223, 401, 523, 601, 727, 809, 1117, 2003, 4111, 5003, 6121, 7039, 8111, 9007, 11113, 20029, 31147, 50069, 71143, 80209, 111143, 200009, 311111, 400009, 511111, 600043, 711121, 800053, 911111, 2000003, 4111147, 5000263, 7111199, 8000023, 9111161 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sequence is infinite. - T. D. Noe, Jun 06 2007

a(n) may never have all of the 4 digits 1, 3, 7, 9: if a(n) has 3 of these digits then a(n+1) ends with the fourth one. - Pierre CAMI, May 06 2011

LINKS

T. D. Noe, Table of n, a(n) for n = 1..500

MATHEMATICA

ta={1}; Do[s1=IntegerDigits[Part[ta, Length[ta]]]; s2=IntegerDigits[Prime[n]]; If[Equal[Intersection[s1, s2], {}], Print[{Prime[n], Prime[n+1]}]; ta=Append[ta, Prime[n]]], {n, 1, 1000000}]; ta=Delete[ta, 1] (* Labos Elemer, Nov 18 2004 *)

PROG

(Haskell)

import Data.List (intersect)

a030284 n = a030284_list !! (n-1)

a030284_list = f [] a000040_list where

f xs (p:ps) = if null $ intersect xs ys then p : f ys ps else f xs ps

where ys = show p

-- Reinhard Zumkeller, Sep 21 2013

CROSSREFS

Cf. A030283, A229364, A000040.

Sequence in context: A236400 A288371 A158217 * A252791 A068148 A036344

Adjacent sequences: A030281 A030282 A030283 * A030285 A030286 A030287

KEYWORD

nonn,base

AUTHOR

Patrick De Geest

EXTENSIONS

More terms from Labos Elemer, Nov 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 01:21 EDT 2023. Contains 361596 sequences. (Running on oeis4.)