The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282027 a(n+1) = smallest prime p > a(n) such that p-1 divides a(1)*a(2)*...*a(n); or if no such prime p exists, then a(n+1) = smallest prime > a(n). 3
 2, 3, 7, 43, 47, 283, 659, 1319, 1699, 9227, 11887, 55399, 71359, 159707, 396719, 558643, 793439, 794039, 1117379, 1117943, 1143887, 2235887, 5554067, 6707747, 6863323, 13734803, 15667447, 16663963, 18214099, 20123239, 45196799, 46954223, 55937239, 93908447 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Jinyuan Wang, Table of n, a(n) for n = 1..200 MAPLE A[1]:= 2: P:= 1: for n from 2 to 30 do   P:= A[n-1]*P;   p0:= nextprime(A[n-1]);   p:= p0;   while p-1 <= P and P mod (p-1) <> 0 do     p:= nextprime(p)   od:   if p-1 > P then A[n]:= p0   else A[n]:= p   fi; od: seq(A[i], i=1..30); # Robert Israel, Mar 17 2017 PROG (PARI) lista(nn) = {my(d, k, m, t, v=List([2])); for(n=2, nn, k=1; m=oo; while((d=prod(i=1, t=k, v[i]))m || t==n-1, t++); forsubset([t, k], w, if(ispseudoprime(d=prod(i=1, k, v[w[i]])+1) && d>v[n-1], m=min(m, d)))); listput(v, if(m

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 23:53 EDT 2021. Contains 347477 sequences. (Running on oeis4.)