login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282027 a(n+1) = smallest prime p > a(n) such that p-1 divides a(1)*a(2)*...*a(n); or if no such prime p exists, then a(n+1) = smallest prime > a(n). 3
2, 3, 7, 43, 47, 283, 659, 1319, 1699, 9227, 11887, 55399, 71359, 159707, 396719, 558643, 793439, 794039, 1117379, 1117943, 1143887, 2235887, 5554067, 6707747, 6863323, 13734803, 15667447, 16663963, 18214099, 20123239, 45196799, 46954223, 55937239, 93908447 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Jinyuan Wang, Table of n, a(n) for n = 1..200

MAPLE

A[1]:= 2: P:= 1:

for n from 2 to 30 do

  P:= A[n-1]*P;

  p0:= nextprime(A[n-1]);

  p:= p0;

  while p-1 <= P and P mod (p-1) <> 0 do

    p:= nextprime(p)

  od:

  if p-1 > P then A[n]:= p0

  else A[n]:= p

  fi;

od:

seq(A[i], i=1..30); # Robert Israel, Mar 17 2017

PROG

(PARI) lista(nn) = {my(d, k, m, t, v=List([2])); for(n=2, nn, k=1; m=oo; while((d=prod(i=1, t=k, v[i]))<m && k++<n, until(v[t]*d>m || t==n-1, t++); forsubset([t, k], w, if(ispseudoprime(d=prod(i=1, k, v[w[i]])+1) && d>v[n-1], m=min(m, d)))); listput(v, if(m<oo, m, nextprime(v[n-1]+1)))); v; } \\ Jinyuan Wang, Nov 21 2020

CROSSREFS

Inspired by A007459 and A057459.

Sequence in context: A216826 A030087 A106864 * A255595 A085682 A267505

Adjacent sequences:  A282024 A282025 A282026 * A282028 A282029 A282030

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 13 2017

EXTENSIONS

Corrected and extended by Robert Israel, Mar 17 2017

More terms from Jinyuan Wang, Nov 21 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 23:53 EDT 2021. Contains 347477 sequences. (Running on oeis4.)