login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282025
a(r) is the maximum number of secretaries for which the first r should be rejected, if selecting the one with the highest or lowest ranking are both considered a success.
1
3, 8, 13, 18, 23, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 214, 219, 224, 229, 234, 239, 244, 249, 254, 259, 264, 269, 273, 278, 283
OFFSET
0,1
COMMENTS
According to Bayon et al, the probability P(n,r) = 2*r*((r/n-1)+sum_{i=r..n-1} 1/i)/n of success in a generalized Secretary problem for a given number n of applicants has a maximum at some value of r, 1<=r<n. These best values are r=1 for n<=8, r=2 for n<=13, r=3 for n<=18 and so on.
The Beatty sequence of A106533, b(n) = floor(n*A106533), is a good approximation to r for large n. So the indices n-1 of the steps where b(n) = b(n+1)-1 are an approximation to this sequence.
We added numbers 27, 86 and 91 that are apparently missing in the preprint. R. J. Mathar, Feb 22 2017
LINKS
L. Bayon, J. Grau, A. M. Oller-Marcen, M. Ruiz, P. M. Suarez, A variant of the Secretary Problem: the Best or the Worst, arXiv preprint arXiv:1603.03928 [math.PR], 2016.
MAPLE
P := proc(n,
option remember;
local i;
2*r/n*((r/n-1)+add(1/i, i=r..n-1)) ;
end proc:
Pmax := proc(n)
option remember;
local r;
for r from 1 to n-1 do
if P(n, r+1) < P(n, r) then
return r ;
end if;
end do:
end proc:
A282025 := proc(r)
local n ;
if r = 0 then
return 3;
end if;
for n from r+1 do
if Pmax(n+1) = r+1 then
return n;
end if;
end do:
return -1 ;
end proc:
seq(A282025(r), r=0..80) ; # R. J. Mathar, Feb 22 2017
MATHEMATICA
P[n_, r_] := 2 r ((r/n - 1) + Sum[ 1/i, {i, r, n - 1}])/n; Function[s, {3}~Join~Map[-1 + Position[s, #][[1, 1]] &, Range@ Max@ s]]@ Map[Length@ TakeWhile[#, # == 0 &] &, Table[If[P[n, k + 1] < P[n, k], k, 0], {n, 300}, {k, n - 1}]] (* Michael De Vlieger, Feb 22 2017, after Maple *)
CROSSREFS
Sequence in context: A190505 A310305 A184921 * A310306 A095762 A277600
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 11 2017
STATUS
approved