login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282023
Start with 1; multiply alternately by 4 and 3.
1
1, 4, 12, 48, 144, 576, 1728, 6912, 20736, 82944, 248832, 995328, 2985984, 11943936, 35831808, 143327232, 429981696, 1719926784, 5159780352, 20639121408, 61917364224, 247669456896, 743008370688, 2972033482752, 8916100448256, 35664401793024, 106993205379072, 427972821516288
OFFSET
0,2
COMMENTS
Satisfies Benford's law.
REFERENCES
Berger, Arno, and Theodore P. Hill. "Benford's law strikes back: no simple explanation in sight for mathematical gem." The Mathematical Intelligencer 33.1 (2011): 85-91.
FORMULA
From Ilya Gutkovskiy, Feb 09 2017: (Start)
O.g.f.: (1 + 4*x)/(1 - 12*x^2).
E.g.f.: 2*sinh(2*sqrt(3)*x)/sqrt(3) + cosh(2*sqrt(3)*x).
(End)
From Colin Barker, Feb 09 2017: (Start)
a(n) = 2^n * 3^(n/2) for n even.
a(n) = 2^(n+1) * 3^((n-1)/2) for n odd.
a(n) = 12*a(n-2) for n>1.
(End)
MATHEMATICA
CoefficientList[Series[(4 x + 1)/(-12 x^2 + 1), {x, 0, 27}], x] (* or *)
Range[0, 27]! CoefficientList[ Series[2 Sinh[2 Sqrt[3]*x]/Sqrt[3] + Cosh[2 Sqrt[3]*x], {x, 0, 27}], x] (* or *)
LinearRecurrence[{0, 12}, {1, 4}, 28] (* Robert G. Wilson v, Feb 09 2017 *)
nxt[{a_, b_}]:=If[b/a==3, {b, 4b}, {b, 3b}]; NestList[nxt, {1, 4}, 30][[All, 1]] (* Harvey P. Dale, May 31 2020 *)
PROG
(PARI) Vec((1 + 4*x)/(1 - 12*x^2) + O(x^30)) \\ Colin Barker, Feb 09 2017
(PARI) a(n)=2^if(n%2, n+1, n)*3^(n\2) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Cf. A282022.
Sequence in context: A253087 A262414 A081620 * A149376 A149377 A063887
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 08 2017
STATUS
approved