OFFSET
0,2
COMMENTS
Satisfies Benford's law.
REFERENCES
Berger, Arno, and Theodore P. Hill. "Benford's law strikes back: no simple explanation in sight for mathematical gem." The Mathematical Intelligencer 33.1 (2011): 85-91.
LINKS
FORMULA
From Ilya Gutkovskiy, Feb 09 2017: (Start)
O.g.f.: (1 + 4*x)/(1 - 12*x^2).
E.g.f.: 2*sinh(2*sqrt(3)*x)/sqrt(3) + cosh(2*sqrt(3)*x).
(End)
From Colin Barker, Feb 09 2017: (Start)
a(n) = 2^n * 3^(n/2) for n even.
a(n) = 2^(n+1) * 3^((n-1)/2) for n odd.
a(n) = 12*a(n-2) for n>1.
(End)
MATHEMATICA
CoefficientList[Series[(4 x + 1)/(-12 x^2 + 1), {x, 0, 27}], x] (* or *)
Range[0, 27]! CoefficientList[ Series[2 Sinh[2 Sqrt[3]*x]/Sqrt[3] + Cosh[2 Sqrt[3]*x], {x, 0, 27}], x] (* or *)
LinearRecurrence[{0, 12}, {1, 4}, 28] (* Robert G. Wilson v, Feb 09 2017 *)
nxt[{a_, b_}]:=If[b/a==3, {b, 4b}, {b, 3b}]; NestList[nxt, {1, 4}, 30][[All, 1]] (* Harvey P. Dale, May 31 2020 *)
PROG
(PARI) Vec((1 + 4*x)/(1 - 12*x^2) + O(x^30)) \\ Colin Barker, Feb 09 2017
(PARI) a(n)=2^if(n%2, n+1, n)*3^(n\2) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 08 2017
STATUS
approved