OFFSET
1,1
COMMENTS
The smallest integer in the j-th antidiagonal is A000124(j-1). So a(n) is the index j such that A000124(j-1) <= prime(n) < A000124(j). - R. J. Mathar, Dec 02 2011
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = round(sqrt(2*prime(n))). - Vladeta Jovovic, Jun 14 2003
EXAMPLE
The array begins
1 3 6 10 15 ...
2 5 9 14 ...
4 8 13 ...
7 12 ...
11 ...
...
The third prime, 5, is in the 3rd antidiagonal, so a(3) = 3.
MATHEMATICA
Table[Round[Sqrt[2*Prime[n]]], {n, 100}] (* T. D. Noe, Dec 03 2011 *)
PROG
(PARI) a(n)=(sqrtint(8*prime(n))+1)\2 \\ Charles R Greathouse IV, Jul 26 2012
(Haskell)
a057062 n = a057062_list !! (n-1)
a057062_list = f 1 [1..] where
f j xs = (replicate (sum $ map a010051 dia) j) ++ f (j + 1) xs'
where (dia, xs') = splitAt j xs
-- Reinhard Zumkeller, Jul 26 2012
(Python)
from math import isqrt
from sympy import prime
def A057062(n): return isqrt(prime(n)<<3)+1>>1 # Chai Wah Wu, Jun 19 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 30 2000
STATUS
approved