OFFSET
1,4
COMMENTS
For n>0, prime(n) appears {(prime(n+1))^2 - (prime(n))^2} times [from n=(prime(n))^2 to n=(prime(n+1))^2 - 1], that is, A000040(n) appears A069482(n) times (from n=A001248(n) to n=A084920(n+1)). - Lekraj Beedassy, Mar 31 2005
a(n) is the largest prime factor of A045948(n). [Matthew Vandermast, Oct 29 2008]
Alternative definition: a(n) = largest prime <= sqrt(n) (considering 1 as prime for this occasion, see A008578 for the 19th century definition of primes). - Jean-Christophe Hervé, Oct 29 2013
LINKS
Jean-Christophe Hervé, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = prime(w) if prime(w)^2 <= n < prime(w+1)^2.
EXAMPLE
The j-th prime appears at the position of its square, at n = prime(j)^2.
MATHEMATICA
Table[f = Transpose[FactorInteger[LCM @@ Range[n]]]; pos = Position[f[[2]], _?(# > 1 &)]; If[pos == {}, 1, f[[1, pos[[-1]]]][[1]]], {n, 100}] (* T. D. Noe, Oct 30 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Aug 28 2000
EXTENSIONS
Corrected offset by Jean-Christophe Hervé, Oct 29 2013
STATUS
approved