%I
%S 1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,
%T 5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
%U 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
%N Largest nonunitary prime factor of LCM(1,...,n); that is, the largest prime which occurs to power > 1 in prime factorization of LCM(1,..,n).
%C For n>0, prime(n) appears {(prime(n+1))^2  (prime(n))^2} times [from n=(prime(n))^2 to n=(prime(n+1))^2  1], that is, A000040(n) appears A069482(n) times (from n=A001248(n) to n=A084920(n+1)).  _Lekraj Beedassy_, Mar 31 2005
%C a(n) is the largest prime factor of A045948(n). [_Matthew Vandermast_, Oct 29 2008]
%C Alternative definition: a(n) = largest prime <= sqrt(n) (considering 1 as prime for this occasion, see A008578 for the 19th century definition of primes).  _JeanChristophe Hervé_, Oct 29 2013
%H JeanChristophe Hervé, <a href="/A056813/b056813.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = prime(w) if prime(w)^2 <= n < prime(w+1)^2.
%F To get the sequence, repeat 1 three times, and then for any k >= 1, repeat A000040(k) A069482(k) times; or equivalently, for any k >= 1, repeat A008578(k) a number of times equal to A008578(k+1)^2  A008578(k)^2.  _JeanChristophe Hervé_, Oct 29 2013
%e The jth prime appears at the position of its square, at n = prime(j)^2.
%t Table[f = Transpose[FactorInteger[LCM @@ Range[n]]]; pos = Position[f[[2]], _?(# > 1 &)]; If[pos == {}, 1, f[[1, pos[[1]]]][[1]]], {n, 100}] (* _T. D. Noe_, Oct 30 2013 *)
%Y Cf. A054041, A056170.
%Y Cf. A000040, A001248, A008578, A069482.
%K nonn,easy
%O 1,4
%A _Labos Elemer_, Aug 28 2000
%E Corrected offset by _JeanChristophe Hervé_, Oct 29 2013
