login
A056555
Smallest number k (k>0) such that n*k is a perfect 4th power.
4
1, 8, 27, 4, 125, 216, 343, 2, 9, 1000, 1331, 108, 2197, 2744, 3375, 1, 4913, 72, 6859, 500, 9261, 10648, 12167, 54, 25, 17576, 3, 1372, 24389, 27000, 29791, 8, 35937, 39304, 42875, 36, 50653, 54872, 59319, 250, 68921, 74088, 79507, 5324, 1125
OFFSET
1,2
FORMULA
a(n) = A053167(n)/n = n^3/A000190(n)^4 = A056553(n)/A053165(n).
Multiplicative with a(p^e) = p^((4 - e) mod 4). - Amiram Eldar, Sep 08 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(16)/(4*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.1537848996... . - Amiram Eldar, Oct 27 2022
EXAMPLE
a(64) = 4 because the smallest 4th power divisible by 64 is 256 and 64*4 = 256.
MATHEMATICA
f[p_, e_] := p^Mod[4 - e, 4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
PROG
(PARI) a(n, f=factor(n))=f[, 2]=-f[, 2]%4; factorback(f) \\ Charles R Greathouse IV, Apr 24 2020
KEYWORD
nonn,mult
AUTHOR
Henry Bottomley, Jun 25 2000
STATUS
approved