login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056550
Numbers k such that Sum_{j=1..k} sigma(j) is divisible by k, where sigma(j) = sum of divisors of j (A000203).
15
1, 2, 8, 11, 17, 63, 180, 259, 818, 2161, 4441, 8305, 11998, 694218, 3447076, 4393603, 57402883, 73459800, 121475393, 2068420025, 5577330586, 13320495021, 35297649260, 138630178659, 988671518737
OFFSET
1,2
FORMULA
Values of k for which A024916(k)/k is integer.
EXAMPLE
a(3) = 8 is in the sequence because A024916(8) / 8 = 56 / 8 = 7 is an integer. [Jaroslav Krizek, Dec 07 2009]
MAPLE
f := []: for i from 1 to 9000 do if add(sigma(n), n=1..i) mod i = 0 then f := [op(f), i] fi; od; f;
MATHEMATICA
k=10^4; a[1]=1; a[n_]:=a[n]=DivisorSigma[1, n]+a[n-1]; s=a/@Range@k; Select[Range@k, Divisible[s[[#]], #]&] (* Ivan N. Ianakiev, Apr 30 2016 *)
Module[{nn=44*10^5, ds}, ds=Accumulate[DivisorSigma[1, Range[nn]]]; Select[ Thread[{ds, Range[nn]}], Divisible[#[[1]], #[[2]]]&]][[All, 2]] (* The program generates the first 16 terms of the sequence. To generate more, increase the value of nn. *) (* Harvey P. Dale, Dec 04 2018 *)
PROG
(PARI) is(n)=sum(k=1, n, n\k*k)%n==0 \\ Charles R Greathouse IV, Feb 14 2013
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Asher Auel, Jun 06 2000
EXTENSIONS
More terms from Jud McCranie, Jul 04 2000
a(19)-a(24) from Donovan Johnson, Dec 29 2008
a(25) from Donovan Johnson, Jun 16 2011
STATUS
approved