The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055235 Sums of two powers of 3. 13
 2, 4, 6, 10, 12, 18, 28, 30, 36, 54, 82, 84, 90, 108, 162, 244, 246, 252, 270, 324, 486, 730, 732, 738, 756, 810, 972, 1458, 2188, 2190, 2196, 2214, 2268, 2430, 2916, 4374, 6562, 6564, 6570, 6588, 6642, 6804, 7290, 8748, 13122, 19684, 19686, 19692, 19710 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS T. D. Noe, Rows n = 0..100 of triangle, flattened FORMULA a(n+1) = 3^(n-trinv(n)*(trinv(n)+1)/2)+3^trinv(n), where trinv(n) = floor((sqrt(1+8*n)-1)/2) = A003056(n) and n-trinv(n)*(trinv(n)+1)/2 = A002262(n). [corrected by M. F. Hasler, Oct 08 2011] Regarded as a triangle, T(n, k) = 3^n + 3^k, because 3^n + 3^n < 3^(n+1) + 3^0 for all n > 0. MATHEMATICA mx = 10; Sort[Flatten[Table[3^x + 3^y, {y, 0, mx}, {x, 0, y}]]] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *) f[n_] := Block[{t = Floor[(Sqrt[1 + 8 (n - 1)] - 1)/2]}, 3^(n - 1 - t*(t + 1)/2) + 3^t]; Array[f, 49] (* Robert G. Wilson v, Oct 08 2011 *) PROG (PARI) for( n=0, 5, for(k=0, n, print1(3^n+3^k", "))) (PARI) A055235(n)={ my( t=(sqrtint(8*n-7)-1)\2); 3^t+3^(n-1-t*(t+1)/2) } \\ M. F. Hasler, Oct 08 2011 CROSSREFS Cf. A052216. Partial sums of A135293. Sequence in context: A065385 A244052 A324059 * A083887 A339736 A064374 Adjacent sequences: A055232 A055233 A055234 * A055236 A055237 A055238 KEYWORD easy,nonn,tabl AUTHOR Henry Bottomley, Jun 22 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 11:20 EDT 2023. Contains 365688 sequences. (Running on oeis4.)