login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054799
Integers n such that sigma(n+2) = sigma(n) + 2, where sigma = A000203, the sum of divisors of n.
18
3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 434, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487
OFFSET
1,1
COMMENTS
Only 3 composite numbers are known: 434, 8575, 8825. This sequence is the union of A050507 and A001359.
The terms are also the solutions of A001065(x) = A001065(x+2), where A001065(n) is the sum of proper divisors of n. - Michel Marcus, Nov 14 2014
REFERENCES
Sivaramakrishnan, R. (1989): Classical Theory of Arithmetical Functions., M.Dekker Inc., New York, Problem 12 in Chapter V., p. 81.
EXAMPLE
n = 434, divisors = {1, 2, 7, 14, 31, 62, 217, 434}, sigma(434) = 768, sigma(436) = 770; n = 8575, divisors = {1, 5, 7, 25, 35, 49, 175, 245, 343, 1225, 1715, 8575}, sigma(8575) = 12400, sigma(8577) = 12402; n = 8825, divisors = {1, 5, 25, 353, 1765, 8825}, sigma(8525) = 10974, sigma(8527) = 10976.
MATHEMATICA
Select[Range[1500], DivisorSigma[1, #+2]==DivisorSigma[1, #]+2&] (* Jayanta Basu, May 01 2013 *)
PROG
(PARI) is(n)=sigma(n+2)==sigma(n)+2 \\ Charles R Greathouse IV, Feb 13 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 22 2000
STATUS
approved