|
|
A078859
|
|
Least positive residues (mod 210) representing those residue classes which can be the lesser of twin prime pairs (A001359).
|
|
9
|
|
|
3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 167, 179, 191, 197, 209
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Intersection[RRS(210), 2+RRS{210)]-2 and {3, 5}. RRS(210)=reduced residue system of 210=first 48=phi(210) terms of A008364; two additional term 3 and 5 are singular cases; 210k+r generates complete A001359 with suitable k and r taken from these 15+2 numbers.
|
|
MATHEMATICA
|
With[{n = 4}, Function[P, Join[Select[Prime@ Range@ n, NextPrime@ # == # + 2 &], Select[Partition[Select[Range[P + 1], CoprimeQ[#, P] &], 2, 1], Differences@ # == {2} &][[All, 1]]]]@ Product[Prime@ i, {i, n}]] (* Michael De Vlieger, May 15 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
fini,full,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|