login
A051021
Decimal expansion of Mills's constant, assuming the Riemann Hypothesis is true.
15
1, 3, 0, 6, 3, 7, 7, 8, 8, 3, 8, 6, 3, 0, 8, 0, 6, 9, 0, 4, 6, 8, 6, 1, 4, 4, 9, 2, 6, 0, 2, 6, 0, 5, 7, 1, 2, 9, 1, 6, 7, 8, 4, 5, 8, 5, 1, 5, 6, 7, 1, 3, 6, 4, 4, 3, 6, 8, 0, 5, 3, 7, 5, 9, 9, 6, 6, 4, 3, 4, 0, 5, 3, 7, 6, 6, 8, 2, 6, 5, 9, 8, 8, 2, 1, 5, 0, 1, 4, 0, 3, 7, 0, 1, 1, 9, 7, 3, 9, 5, 7, 0, 7, 2, 9
OFFSET
1,2
COMMENTS
Not known to be rational or irrational. See Saito (2024) for a new result. - Charles R Greathouse IV, Jul 18 2013, Hugo Pfoertner, May 01 2024
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 641 terms from Tin Apato)
C. K. Caldwell, Mills's Constant [Gives 6000 terms assuming the Riemann Hypothesis.]
Chris K. Caldwell and Yuanyou Chen, Determining Mills' Constant and a Note on Honaker's Problem, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.
Christian Elsholtz, Unconditional Prime-representing Functions, Following Mills, arXiv:2004.01285 [math.NT], 2020.
James Grime and Brady Haran, Awesome Prime Number Constant, Numberphile video (2013).
Brian Hayes, Pumping the Primes, bit-player, Aug 19 2015.
Aminu Alhaji Ibrahim and Sa’idu Isah Abubaka, Aunu Integer Sequence as Non-Associative Structure and Their Graph Theoretic Properties, Advances in Pure Mathematics, 2016, 6, 409-419.
Bernard Montaron, Exponential prime sequences, arXiv:2011.14653 [math.NT], 2020.
Simon Plouffe, The calculation of p(n) and pi(n), arXiv:2002.12137 [math.NT], 2020.
Kota Saito, Mills' constant is irrational, arXiv:2404.19461 [math.NT], 2024.
László Tóth, A Variation on Mills-Like Prime-Representing Functions, arXiv:1801.08014 [math.NT], 2018.
Eric Weisstein's World of Mathematics, Mills' Constant
Eric Weisstein's World of Mathematics, Prime Formulas
EXAMPLE
1.3063778838630806904686144926026057129167845851567136443680537599664340537668...
MATHEMATICA
RealDigits[ Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8), 10, 111][[1]] (* Robert G. Wilson v, Nov 14 2012 *)
PROG
(PARI) A051021_upto(N=99)=localprec(N+9); digits(10^N*sqrtn(A051254(N=logint(N, 3)+2), 3^N)\1) \\ M. F. Hasler, Sep 11 2024
CROSSREFS
Cf. A051254.
Sequence in context: A212225 A278085 A356195 * A294777 A215664 A088162
KEYWORD
nonn,cons
EXTENSIONS
More terms from Robert G. Wilson v, Sep 08 2000
More terms from Tin Apato (tinapto(AT)yahoo.es), Dec 12 2007
STATUS
approved