

A050435


a(n) = composite(composite(n)), where composite = A002808, composite numbers.


12



9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100, 102, 104, 105, 106, 110, 111, 112, 115, 116, 117, 118, 119
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Secondorder composite numbers.
Composites (A002808) with composite (A002808) subscripts. a(n) U A022449(n) = A002808(n). Subsequence of A175251 (composites (A002808) with nonprime (A018252) subscripts), a(n) = A175251(n+1) for n >= 1.  Jaroslav Krizek, Mar 14 2010


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
N. Fernandez, An order of primeness, F(p)
N. Fernandez, An order of primeness [cached copy, included with permission of the author]


FORMULA

Let C(n) be the nth composite number, with C(1)=4. Then these are numbers C(C(n)).
a(n) = n + 2n/log n + O(n/log^2 n).  Charles R Greathouse IV, Jun 25 2017


EXAMPLE

The 2nd composite number is 6 and the 6th composite number is 12, so a(2) = 12. a(100) = A002808(A002808(100)) = A002808(133) = 174.


MATHEMATICA

Select[ Range[ 6, 150 ], ! PrimeQ[ # ] && ! PrimeQ[ #  PrimePi[ # ]  1 ] & ]
With[{cmps=Select[Range[200], CompositeQ]}, Table[cmps[[cmps[[n]]]], {n, 70}]] (* Harvey P. Dale, Feb 18 2018 *)


PROG

(Haskell)
a050435 = a002808 . a002808
a050435_list = map a002808 a002808_list
 Reinhard Zumkeller, Jan 12 2013
(PARI) composite(n)=my(k=1); while(n + n += k + k=primepi(n), ); n \\ M. F. Hasler
a(n)=composite(composite(n)) \\ Charles R Greathouse IV, Jun 25 2017


CROSSREFS

Sequence in context: A114306 A009188 A138299 * A176656 A248903 A138945
Adjacent sequences: A050432 A050433 A050434 * A050436 A050437 A050438


KEYWORD

easy,nonn,nice


AUTHOR

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999


EXTENSIONS

More terms from Robert G. Wilson v, Dec 20 2000


STATUS

approved



