The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050435 a(n) = composite(composite(n)), where composite = A002808, composite numbers. 12
 9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100, 102, 104, 105, 106, 110, 111, 112, 115, 116, 117, 118, 119 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Second-order composite numbers. Composites (A002808) with composite (A002808) subscripts. a(n) U A022449(n) = A002808(n). Subsequence of A175251 (composites (A002808) with nonprime (A018252) subscripts), a(n) = A175251(n+1) for n >= 1. - Jaroslav Krizek, Mar 14 2010 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 N. Fernandez, An order of primeness, F(p) N. Fernandez, An order of primeness [cached copy, included with permission of the author] FORMULA Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(n)). a(n) = n + 2n/log n + O(n/log^2 n). - Charles R Greathouse IV, Jun 25 2017 EXAMPLE The 2nd composite number is 6 and the 6th composite number is 12, so a(2) = 12. a(100) = A002808(A002808(100)) = A002808(133) = 174. MATHEMATICA Select[ Range[ 6, 150 ], ! PrimeQ[ # ] && ! PrimeQ[ # - PrimePi[ # ] - 1 ] & ] With[{cmps=Select[Range[200], CompositeQ]}, Table[cmps[[cmps[[n]]]], {n, 70}]] (* Harvey P. Dale, Feb 18 2018 *) PROG (Haskell) a050435 = a002808 . a002808 a050435_list = map a002808 a002808_list -- Reinhard Zumkeller, Jan 12 2013 (PARI) composite(n)=my(k=-1); while(-n + n += -k + k=primepi(n), ); n \\ M. F. Hasler a(n)=composite(composite(n)) \\ Charles R Greathouse IV, Jun 25 2017 (Python) from sympy import composite def a(n): return composite(composite(n)) print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Sep 12 2021 CROSSREFS Cf. A002808, A018252, A022449, A175251. Sequence in context: A114306 A009188 A138299 * A176656 A345498 A248903 Adjacent sequences:  A050432 A050433 A050434 * A050436 A050437 A050438 KEYWORD easy,nonn,nice AUTHOR Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999 EXTENSIONS More terms from Robert G. Wilson v, Dec 20 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 5 21:22 EDT 2022. Contains 355102 sequences. (Running on oeis4.)