

A050436


Thirdorder composites.


7



16, 21, 25, 26, 28, 33, 36, 38, 39, 42, 48, 49, 50, 52, 55, 56, 57, 60, 64, 68, 69, 70, 72, 74, 77, 78, 80, 84, 87, 88, 90, 93, 94, 95, 98, 100, 104, 105, 106, 110, 111, 115, 117, 118, 119, 121, 122, 124, 125, 126, 130, 133, 135, 138, 140, 141, 145, 146, 147
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..59.
N. Fernandez, An order of primeness, F(p)
N. Fernandez, An order of primeness [cached copy, included with permission of the author]


FORMULA

Let C(n) be the nth composite number, with C(1)=4. Then these are numbers C(C(C(n))).


EXAMPLE

C(C(C(8))) = C(C(15)) = C(25) = 38. So 38 is in the sequence.


MAPLE

C := remove(isprime, [$4..1000]): seq(C[C[C[C[n]]]], n=1..100);


MATHEMATICA

Nest[Values@ KeySelect[MapIndexed[First@ #2 > #1 &, #], CompositeQ] &, Select[Range@ 150, CompositeQ], 2] (* Michael De Vlieger, Jul 22 2017 *)


CROSSREFS

Cf. A049076, A049077, A049078, A049079, A049080, A049081, A006450, A050435, A050438, ...
Sequence in context: A290142 A165160 A180411 * A038868 A214515 A270783
Adjacent sequences: A050433 A050434 A050435 * A050437 A050438 A050439


KEYWORD

easy,nonn


AUTHOR

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999


EXTENSIONS

More terms from Asher Auel (asher.auel(AT)reed.edu) Dec 15 2000


STATUS

approved



