login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048055 Numbers n such that (sum of the nonprime proper divisors of n) - (sum of prime divisors of n) = n. 2
532, 945, 2624, 5704, 6536, 229648, 497696, 652970, 685088, 997408, 1481504, 11177984, 32869504, 52813084, 132612224, 224841856, 2140668416, 2404135424, 2550700288, 6469054976, 9367192064, 19266023936, 23414463358, 31381324288, 45812547584, 55620289024 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Contribution from Peter Luschny, Dec 14 2009: (Start)

A member of this sequence is a Zumkeller number (A083207) since the set of its divisors can be partitioned into two disjoint parts so that the sums of the two parts are equal.

1 + sigma*(n) = sigma'(n) + n

sigma*(n) := sum{1 < d < n, d|n, d not prime}, (A060278),

sigma'(n) := sum{1 < d < n, d|n, d prime}, (A105221). (End)

LINKS

Donovan Johnson, Table of n, a(n) for n = 1..34 (terms <= 10^12)

Donovan Johnson, 82 terms > 10^12

Peter Luschny, Zumkeller Numbers.

EXAMPLE

532 = 1 - 2 + 4 - 7 + 14 - 19 + 28 + 38 + 76 + 133 + 266.

MAPLE

# Contribution from Peter Luschny, Dec 14 2009: (Start)

with(numtheory): A048055 := proc(n) local k;

if sigma(n)=2*(n+add(k, k=select(isprime, divisors(n))))

then n else NULL fi end: seq(A048055(i), i=1..7000); # (End)

MATHEMATICA

zummableQ[n_] := DivisorSigma[1, n] == 2*(n + Total[Select[Divisors[n], PrimeQ]]); n = 2; A048055 = {}; While[n < 10^6, If[zummableQ[n], Print[n]; AppendTo[A048055, n]]; n++]; A048055 (* Jean-Fran├žois Alcover, Dec 07 2011, after Peter Luschny *)

PROG

(Haskell)

import Data.List (partition)

a048055 n = a048055_list !! (n-1)

a048055_list = [x | x <- a002808_list,

               let (us, vs) = partition ((== 1) . a010051) $ a027751_row x,

               sum us + x == sum vs]

-- Reinhard Zumkeller, Apr 05 2013

(Python)

from sympy import divisors, primefactors

A048055 = []

for n in range(1, 10**4):

....s = sum(divisors(n))

....if not s % 2 and 2*n <= s and (s-2*n)/2 == sum(primefactors(n)):

........A048055.append(n) # Chai Wah Wu, Aug 20 2014

CROSSREFS

Cf. A083207, A105221, A060278, A000203, A027751, A010051, A002808.

Sequence in context: A174780 A191950 A333102 * A067803 A098258 A160176

Adjacent sequences:  A048052 A048053 A048054 * A048056 A048057 A048058

KEYWORD

nonn,nice

AUTHOR

Naohiro Nomoto

EXTENSIONS

a(15)-a(19) from Donovan Johnson, Dec 07 2008

a(20)-a(24) from Donovan Johnson, Jul 06 2010

a(25)-a(26) from Donovan Johnson, Feb 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 19:49 EDT 2020. Contains 333127 sequences. (Running on oeis4.)