login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047648
Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^23 in powers of x.
4
1, -23, 253, -1771, 8832, -33143, 95611, -209231, 317009, -181401, -686642, 2828977, -6099278, 8422623, -4906406, -10919687, 41968146, -78977952, 93297545, -40351223, -117265247, 367581446, -606562624, 631382751, -207879980, -777907725, 2132043121
OFFSET
23,2
LINKS
H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
FORMULA
a(n) = [x^n]( QPochhammer(-x) - 1 )^23. - G. C. Greubel, Sep 05 2023
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 23):
seq(a(n), n=23..49); # Alois P. Heinz, Feb 07 2021
MATHEMATICA
nmax=49; CoefficientList[Series[(Product[(1-(-x)^j), {j, nmax}] -1)^23, {x, 0, nmax}], x]//Drop[#, 23] & (* Ilya Gutkovskiy, Feb 07 2021 *)
With[{k=23}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x, 0, 75}], x], k]] (* G. C. Greubel, Sep 05 2023 *)
PROG
(Magma)
m:=75;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(23) )); // G. C. Greubel, Sep 05 2023
(SageMath)
from sage.modular.etaproducts import qexp_eta
m=75; k=23;
def f(k, x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
def A047648_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(k, x) ).list()
a=A047648_list(m); a[k:] # G. C. Greubel, Sep 05 2023
(PARI) my(N=44, x='x+O('x^N)); Vec((eta(-x)-1)^23) \\ Joerg Arndt, Sep 05 2023
KEYWORD
sign
EXTENSIONS
Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021
STATUS
approved