login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046520 a(n) = (sum of divisors of n) - phi(n) - (number of divisors of n). 3
-1, 0, 0, 2, 0, 6, 0, 7, 4, 10, 0, 18, 0, 14, 12, 18, 0, 27, 0, 28, 16, 22, 0, 44, 8, 26, 18, 38, 0, 56, 0, 41, 24, 34, 20, 70, 0, 38, 28, 66, 0, 76, 0, 58, 48, 46, 0, 98, 12, 67, 36, 68, 0, 94, 28, 88, 40, 58, 0, 140, 0, 62, 62, 88, 32, 116, 0, 88, 48, 112, 0, 159, 0, 74 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Always >= 0 for n >= 2. a(n)=0 if and only if n is prime.

If n is an even semiprime > 4 (A100484), then a(n) = n. - Wesley Ivan Hurt, Dec 25 2013

REFERENCES

D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section I.3.1 (but they have "tau" instead of "sigma").

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).

FORMULA

a(n) = A000203(n) - A000010(n) - A000005(n).

MAPLE

with(numtheory); A046520:=n->sigma(n)-phi(n)-tau(n); seq(A046520(n), n=1..100); # Wesley Ivan Hurt, Dec 25 2013

MATHEMATICA

DivisorSigma[1, #] - EulerPhi[#] - DivisorSigma[0, #] & /@ Range[74] (* Jayanta Basu, Jun 27 2013 *)

CROSSREFS

Cf. A000203, A000010, A000005, A079538, A079539.

Sequence in context: A300227 A290971 A178636 * A146076 A157195 A019781

Adjacent sequences:  A046517 A046518 A046519 * A046521 A046522 A046523

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Corrected by Dean Hickerson, Dec 19 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 23:35 EDT 2021. Contains 343829 sequences. (Running on oeis4.)