login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079539
a(n) = sigma[k](n) - phi(n)^k - d(n)^k for k=3.
3
-1, 0, 12, 38, 54, 180, 120, 457, 514, 1006, 324, 1764, 462, 2816, 2952, 4044, 810, 6381, 1020, 8470, 7840, 10924, 1512, 15356, 7724, 17990, 14544, 23168, 2430, 30728, 2784, 33137, 29232, 40066, 29456, 52804, 3990, 55844, 47656, 69102, 4914, 84448, 5412, 89020
OFFSET
1,3
COMMENTS
It is known that a(n) >= 0 for n >= 2.
REFERENCES
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 10.
FORMULA
a(n) = 3*n^2 - 3*n - 6 for prime n. - T. D. Noe, Dec 19 2006
MATHEMATICA
Table[DivisorSigma[3, n] - EulerPhi[n]^3 - DivisorSigma[0, n]^3, {n, 80}] (* G. C. Greubel, Jan 15 2019 *)
PROG
(PARI) vector(80, n, sigma(n, 3) - eulerphi(n)^3 - numdiv(n)^3) \\ G. C. Greubel, Jan 15 2019
(Magma) [DivisorSigma(3, n) - EulerPhi(n)^3 - DivisorSigma(0, n)^3: n in [1..80]]; // G. C. Greubel, Jan 15 2019
(Sage) [sigma(n, 3) - euler_phi(n)^3 - sigma(n, 0)^3 for n in (1..80)] # G. C. Greubel, Jan 15 2019
CROSSREFS
Sequence in context: A043117 A039294 A043897 * A242720 A212510 A213490
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jan 23 2003
STATUS
approved