login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041221
Denominators of continued fraction convergents to sqrt(122).
4
1, 22, 485, 10692, 235709, 5196290, 114554089, 2525386248, 55673051545, 1227332520238, 27056988496781, 596481079449420, 13149640736384021, 289888577279897882, 6390698340894137425, 140885252076950921232, 3105866244033814404529, 68469942620820867820870
OFFSET
0,2
COMMENTS
From Michael A. Allen, May 04 2023: (Start)
Also called the 22-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 22 kinds of squares available. (End)
LINKS
FORMULA
a(n) = F(n, 22), the n-th Fibonacci polynomial evaluated at x=22. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 22*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=22.
G.f.: 1/(1 - 22*x - x^2). (End)
MATHEMATICA
Denominator[Convergents[Sqrt[122], 30]] (* Vincenzo Librandi, Dec 13 2013 *)
Fibonacci[1+Range[0, 30], 22] (* G. C. Greubel, Oct 25 2024 *)
PROG
(Magma)
[n le 2 select (22)^(n-1) else 22*Self(n-1)+Self(n-2): n in [1..31]]; // G. C. Greubel, Oct 25 2024
(SageMath)
A041221=BinaryRecurrenceSequence(22, 1, 1, 22)
[A041221(n) for n in range(31)] # G. C. Greubel, Oct 25 2024
CROSSREFS
Row n=22 of A073133, A172236 and A352361 and column k=22 of A157103.
Sequence in context: A171296 A009966 A285876 * A041926 A230350 A180780
KEYWORD
nonn,frac,easy,less
EXTENSIONS
More terms from Colin Barker, Nov 14 2013
STATUS
approved