login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036555
Hamming weight of 3n: number of 1's in binary expansion of 3n.
8
0, 2, 2, 2, 2, 4, 2, 3, 2, 4, 4, 2, 2, 4, 3, 4, 2, 4, 4, 4, 4, 6, 2, 3, 2, 4, 4, 3, 3, 5, 4, 5, 2, 4, 4, 4, 4, 6, 4, 5, 4, 6, 6, 2, 2, 4, 3, 4, 2, 4, 4, 4, 4, 6, 3, 4, 3, 5, 5, 4, 4, 6, 5, 6, 2, 4, 4, 4, 4, 6, 4, 5, 4, 6, 6, 4, 4, 6, 5, 6, 4, 6, 6, 6, 6, 8, 2, 3, 2, 4, 4, 3, 3, 5, 4, 5, 2, 4, 4
OFFSET
0,2
COMMENTS
a(n) is also the largest integer such that 2^a(n) divides binomial(6n,3n)=A066802(n). - Benoit Cloitre, Mar 27 2002
a(n) = A000120(A008585(n)). - Reinhard Zumkeller, Nov 03 2010
a(A002450(n)) = 2*n.
LINKS
S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
Philippe Flajolet, Peter Grabner, Peter Kirschenhofer, Helmut Prodinger and Robert F. Tichy, Mellin transforms and asymptotics: digital sums, Theoret. Comput. Sci. 123 (1994), 291-314.
D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719-721.
MAPLE
t1:=[];
for n from 0 to 100 do t2:=convert(3*n, base, 2); t3:=add(t2[i], i=1..nops(t2)); t1:=[op(t1), t3]; od:
t1;
MATHEMATICA
Total/@IntegerDigits[3Range[0, 100], 2] (* Harvey P. Dale, Oct 03 2011 *)
PROG
(Haskell)
a036555 = a000120 . (* 3) -- Reinhard Zumkeller, Sep 01 2013
(PARI) a(n) = hammingweight(3*n); \\ Michel Marcus, Mar 13 2014
CROSSREFS
KEYWORD
nonn,base,easy,nice
AUTHOR
EXTENSIONS
Name edited by Michel Marcus, Mar 13 2014
STATUS
approved