login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036557
Number of multiples of 3 in 0..2^n-1 with an even sum of base-2 digits.
3
1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 463, 926, 1730, 3460, 6555, 13110, 25126, 50252, 97223, 194446, 379050, 758100, 1486675, 2973350, 5858126, 11716252, 23166783, 46333566, 91869970, 183739940, 365088395, 730176790
OFFSET
0,3
FORMULA
From Ralf Stephan, Aug 29 2004: (Start)
a(n) = (1/12)*(3^((n+1)/2) + 3^((n+2)/2) + 2^(n+1) + (-1)^n + 3), n > 0.
G.f.: (1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5)/((1-x^2)*(1-2*x)*(1-3*x^2)). (End)
a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) - 3*a(n-4) + 6*a(n-5). - Wesley Ivan Hurt, Apr 13 2021
MATHEMATICA
Sum[ Sum[ Binomial[ Floor[ n/2 ], i ], {i, r, n, 6} ]*Sum[ Binomial[ Ceiling[ n/2 ], i ], {i, r, n, 6} ], {r, 0, 5} ]
Join[{1}, LinearRecurrence[{2, 4, -8, -3, 6}, {1, 2, 3, 6, 10}, 50]] (* G. C. Greubel, Dec 31 2017 *)
PROG
(PARI) x='x+O('x^30); Vec((1-x-4*x^2+3*x^3+3*x^4-x^5)/((1-x^2)*(1-2*x)*(1-3*x^2))) \\ G. C. Greubel, Dec 31 2017
(Magma) I:=[1, 2, 3, 6, 10]; [1] cat [n le 5 select I[n] else 2*Self(n-1) + 4*Self(n-2) - 8*Self(n-3) - 3*Self(n-4) + 6*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 31 2017
CROSSREFS
Sequence in context: A001405 A126930 A210736 * A173125 A047131 A231331
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved