OFFSET
0,3
COMMENTS
Is this the same as A035785? - R. J. Mathar, Oct 20 2008
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1000 (first 200 terms from Georg Fischer)
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (0, 48, 0, -1128, 0, 17296, 0, -194580, 0, 1712304, 0, -12271512, 0, 73629072, 0, -377348994, 0, 1677106640, 0, -6540715896, 0, 22595200368, 0, -69668534468, 0, 192928249296, 0, -482320623240, 0, 1093260079344, 0, -2254848913647, 0, 4244421484512, 0, -7309837001104, 0, 11541847896480, 0, -16735679449896, 0, 22314239266528, 0, -27385657281648, 0, 30957699535776, 0, -32247603683100, 0, 30957699535776, 0, -27385657281648, 0, 22314239266528, 0, -16735679449896, 0, 11541847896480, 0, -7309837001104, 0, 4244421484512, 0, -2254848913647, 0, 1093260079344, 0, -482320623240, 0, 192928249296, 0, -69668534468, 0, 22595200368, 0, -6540715896, 0, 1677106640, 0, -377348994, 0, 73629072, 0, -12271512, 0, 1712304, 0, -194580, 0, 17296, 0, -1128, 0, 48, 0, -1).
MAPLE
f := proc(m) local k, t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1, n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n); fi; t1; end; where n=48.
MATHEMATICA
n = 48;
f[m_] := Module[{k, t1}, t1 = 2^(n-1) Binomial[(n+2m)/2 - 1, n-1]; If[ EvenQ[m], t1 = t1 + Sum[2^k Binomial[n, k] Binomial[m-1, k-1], {k, 0, n}]]; t1];
f /@ Range[0, 22, 2] (* Jean-François Alcover, Apr 07 2020, from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 27 1998
Zeroes inserted by Georg Fischer, Jul 26 2020
STATUS
approved