|
|
A078094
|
|
Numbers k such that Omega(k) = Omega(k+1) + Omega(k+2) + Omega(k+3) + Omega(k+4). (Omega(k) denotes the number of prime factors of k, counting multiplicity).
|
|
1
|
|
|
4608, 5440, 6144, 6336, 6480, 7680, 8064, 8640, 8704, 9216, 9984, 10752, 11664, 13440, 14400, 15680, 17280, 19200, 20480, 20736, 21120, 23808, 24192, 26208, 27360, 27840, 28512, 31104, 31360, 32000, 32320, 32400, 32832, 34560, 34992
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 4608 is a term because Omega(4608) = 11 = Omega(4609) + Omega(4610) + Omega(4611) + Omega(4612) = 2 + 3 + 3 + 3 = 11.
|
|
PROG
|
(Magma) f:=func<n|&+[p[2]: p in Factorization(n)]>; [k:k in [2..35000]| f(k) eq f(k+1)+ f(k+2)+f(k+3)+f(k+4)]; // Marius A. Burtea, Feb 19 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|