login
A078095
Numbers k such that Omega(k) = Omega(k-1) + Omega(k-2) + Omega(k-3) + Omega(k-4). (Omega(k) denotes the number of prime factors of k, counting multiplicity).
1
1440, 2560, 2880, 3456, 3584, 5760, 6720, 7168, 8192, 8448, 9600, 10080, 10368, 10800, 12150, 12480, 13440, 14000, 15120, 18144, 21120, 21384, 22400, 25088, 25920, 26880, 28320, 30240, 31104, 31680, 34992, 35840, 38400, 39168, 39366
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 1440 is a term because Omega(1440) = 8 = Omega(1439) + Omega(1438) + Omega(1437) + Omega(1436) = 1 + 2 + 2 + 3 = 8.
PROG
(Magma) f:=func<n|&+[p[2]: p in Factorization(n)]>; [k:k in [6..40000]| f(k) eq f(k-1)+ f(k-2)+f(k-3)+f(k-4)]; // Marius A. Burtea, Feb 19 2020
CROSSREFS
Cf. A001222.
Sequence in context: A063846 A252186 A179691 * A157508 A061221 A238041
KEYWORD
nonn
AUTHOR
Shyam Sunder Gupta, Dec 01 2002
STATUS
approved