|
|
A157364
|
|
a(n) = 4802*n^2 - 196*n + 1.
|
|
3
|
|
|
4607, 18817, 42631, 76049, 119071, 171697, 233927, 305761, 387199, 478241, 578887, 689137, 808991, 938449, 1077511, 1226177, 1384447, 1552321, 1729799, 1916881, 2113567, 2319857, 2535751, 2761249, 2996351, 3241057, 3495367
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The identity (4802*n^2-196*n+1)^2-(49*n^2-2*n)*(686*n-14)^2=1 can be written as a(n)^2-A157362(n)*A157363(n)^2=1.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(x^2 + 4996*x + 4607)/(1-x)^3.
E.g.f.: (1 + 4606*x + 4802*x^2)*exp(x) - 1. - G. C. Greubel, Feb 02 2018
|
|
MATHEMATICA
|
LinearRecurrence[{3, -3, 1}, {4607, 18817, 42631}, 50]
|
|
PROG
|
(Magma) I:=[4607, 18817, 42631]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 4802*n^2-196*n+1.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|