OFFSET
0,3
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1000 (first 200 terms from Georg Fischer)
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (0, 44, 0, -946, 0, 13244, 0, -135751, 0, 1086008, 0, -7059052, 0, 38320568, 0, -177232627, 0, 708930508, 0, -2481256778, 0, 7669339132, 0, -21090682613, 0, 51915526432, 0, -114955808528, 0, 229911617056, 0, -416714805914, 0, 686353797976, 0, -1029530696964, 0, 1408831480056, 0, -1761039350070, 0, 2012616400080, 0, -2104098963720, 0, 2012616400080, 0, -1761039350070, 0, 1408831480056, 0, -1029530696964, 0, 686353797976, 0, -416714805914, 0, 229911617056, 0, -114955808528, 0, 51915526432, 0, -21090682613, 0, 7669339132, 0, -2481256778, 0, 708930508, 0, -177232627, 0, 38320568, 0, -7059052, 0, 1086008, 0, -135751, 0, 13244, 0, -946, 0, 44, 0, -1).
MAPLE
f := proc(m) local k, t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1, n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n); fi; t1; end; where n=44.
CROSSREFS
KEYWORD
nonn
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 27 1998
Zeroes inserted by Georg Fischer, Jul 25 2020
STATUS
approved