login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035896 Coordination sequence for diamond structure D^+_40. (Edges defined by l_1 norm = 1.) 1
1, 0, 3200, 0, 1708800, 0, 366366080, 0, 42340840960, 0, 3070951360128, 0, 153524473002240, 0, 5639746542798720, 0, 159505036253752320, 0, 3599066875202445440, 0, 66639047830192168704, 21990232555520 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (0, 40, 0, -780, 0, 9880, 0, -91390, 0, 658008, 0, -3838380, 0, 18643560, 0, -76904685, 0, 273438880, 0, -847660528, 0, 2311801440, 0, -5586853480, 0, 12033222880, 0, -23206929840, 0, 40225345056, 0, -62852101650, 0, 88732378800, 0, -113380261800, 0, 131282408400, 0, -137846528820, 0, 131282408400, 0, -113380261800, 0, 88732378800, 0, -62852101650, 0, 40225345056, 0, -23206929840, 0, 12033222880, 0, -5586853480, 0, 2311801440, 0, -847660528, 0, 273438880, 0, -76904685, 0, 18643560, 0, -3838380, 0, 658008, 0, -91390, 0, 9880, 0, -780, 0, 40, 0, -1).
MAPLE
f := proc(m) local k, t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1, n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n); fi; t1; end; where n=40.
CROSSREFS
Sequence in context: A235781 A235562 A269114 * A224646 A231203 A035777
KEYWORD
nonn
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 27 1998
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 16:49 EST 2024. Contains 370512 sequences. (Running on oeis4.)