login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035894
Coordination sequence for diamond structure D^+_36. (Edges defined by l_1 norm = 1.)
1
1, 0, 2592, 0, 1121472, 0, 194986080, 0, 18300435840, 0, 1080041397408, 0, 44042615547456, 0, 1323529602867936, 0, 30721376739859200, 0, 570951082378155808, 1236950581248, 8740628929823039424
OFFSET
0,3
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (0, 36, 0, -630, 0, 7140, 0, -58905, 0, 376992, 0, -1947792, 0, 8347680, 0, -30260340, 0, 94143280, 0, -254186856, 0, 600805296, 0, -1251677700, 0, 2310789600, 0, -3796297200, 0, 5567902560, 0, -7307872110, 0, 8597496600, 0, -9075135300, 0, 8597496600, 0, -7307872110, 0, 5567902560, 0, -3796297200, 0, 2310789600, 0, -1251677700, 0, 600805296, 0, -254186856, 0, 94143280, 0, -30260340, 0, 8347680, 0, -1947792, 0, 376992, 0, -58905, 0, 7140, 0, -630, 0, 36, 0, -1).
MAPLE
f := proc(m) local k, t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1, n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n); fi; t1; end; where n=36.
CROSSREFS
Sequence in context: A236351 A250241 A252152 * A179702 A258728 A326747
KEYWORD
nonn
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 27 1998
STATUS
approved