|
|
A034930
|
|
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 8.
|
|
15
|
|
|
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 2, 2, 5, 1, 1, 6, 7, 4, 7, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 2, 5, 0, 2, 4, 2, 0, 5, 2, 1, 1, 3, 7, 5, 2, 6, 6, 2, 5, 7, 3, 1, 1, 4, 2, 4, 7, 0, 4, 0, 7, 4, 2, 4, 1, 1, 5, 6, 6, 3, 7, 4, 4, 7, 3, 6, 6, 5, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
James G. Huard, Blair K. Spearman, and Kenneth S. Williams, Pascal's triangle (mod 8), European Journal of Combinatorics 19:1 (1998), pp. 45-62.
Index entries for triangles and arrays related to Pascal's triangle
|
|
FORMULA
|
T(n+1,k) = (T(n,k) + T(n,k-1)) mod 8. - Reinhard Zumkeller, Jul 12 2013
|
|
MATHEMATICA
|
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 8] (* Robert G. Wilson v, May 26 2004 *)
|
|
PROG
|
(Haskell)
a034930 n k = a034930_tabl !! n !! k
a034930_row n = a034930_tabl !! n
a034930_tabl = iterate
(\ws -> zipWith (\u v -> mod (u + v) 8) ([0] ++ ws) (ws ++ [0])) [1]
-- Reinhard Zumkeller, Jul 12 2013, Jun 21 2013
|
|
CROSSREFS
|
Cf. A007318, A047999, A083093, A034931, A008975, A034932.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), (this sequence) (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A096145 A306309 A123264 * A095142 A180171 A140822
Adjacent sequences: A034927 A034928 A034929 * A034931 A034932 A034933
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|