login
A123264
Pascal's reversal triangle, read by rows.
0
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 1, 1, 5, 1, 1, 6, 6, 2, 6, 6, 1, 1, 7, 21, 8, 8, 21, 7, 1, 1, 8, 82, 92, 61, 92, 82, 8, 1, 1, 9, 9, 471, 351, 351, 471, 9, 9, 1, 1, 1, 81, 84, 228, 207, 228, 84, 81, 1, 1, 1, 2, 28, 561, 213, 534, 534, 213, 561, 28, 2, 1, 1, 3, 3, 985, 477
OFFSET
1,5
COMMENTS
Each value is the digital reversal of the sum of the value above and to the left with the value above and to the right. Central coefficients T(2n,n) = 1, 2, 6, 2, 61, 207, 8601, 87861,...
FORMULA
T(0,1) = 1; T(1,1) = T(1,2) = 1; for i>1, T(i,j) = R(T(i-1,j-1)+T(i-1,j)) = A004086(T(i-1,j-1)+T(i-1,j)).
EXAMPLE
Triangle begins:
...........1
..........1.1
.........1.2.1
........1.3.3.1
.......1.4.6.4.1
......1.5.1.1.5.1
.....1.6.6.2.6.6.1
...1.7.21.8.8.21.7.1
.1.8.82.92.61.92.82.8.1
CROSSREFS
Sequence in context: A140279 A096145 A306309 * A034930 A095142 A180171
KEYWORD
base,easy,nonn,tabl
AUTHOR
Jonathan Vos Post, Nov 07 2006
STATUS
approved