%I #4 Mar 30 2012 18:40:41
%S 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,1,1,5,1,1,6,6,2,6,6,1,1,7,21,8,8,
%T 21,7,1,1,8,82,92,61,92,82,8,1,1,9,9,471,351,351,471,9,9,1,1,1,81,84,
%U 228,207,228,84,81,1,1,1,2,28,561,213,534,534,213,561,28,2,1,1,3,3,985,477
%N Pascal's reversal triangle, read by rows.
%C Each value is the digital reversal of the sum of the value above and to the left with the value above and to the right. Central coefficients T(2n,n) = 1, 2, 6, 2, 61, 207, 8601, 87861,...
%F T(0,1) = 1; T(1,1) = T(1,2) = 1; for i>1, T(i,j) = R(T(i-1,j-1)+T(i-1,j)) = A004086(T(i-1,j-1)+T(i-1,j)).
%e Triangle begins:
%e ...........1
%e ..........1.1
%e .........1.2.1
%e ........1.3.3.1
%e .......1.4.6.4.1
%e ......1.5.1.1.5.1
%e .....1.6.6.2.6.6.1
%e ...1.7.21.8.8.21.7.1
%e .1.8.82.92.61.92.82.8.1
%Y Cf. A004086, A007318.
%K base,easy,nonn,tabl
%O 1,5
%A _Jonathan Vos Post_, Nov 07 2006