

A275198


Triangle, read by rows, formed by reading Pascal's triangle mod 14.


13



1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 1, 6, 1, 6, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 8, 0, 0, 0, 0, 0, 8, 1, 1, 9, 8, 0, 0, 0, 0, 8, 9, 1, 1, 10, 3, 8, 0, 0, 0, 8, 3, 10, 1, 1, 11, 13, 11, 8, 0, 0, 8, 11, 13, 11, 1, 1, 12, 10, 10, 5, 8, 0, 8, 5, 10, 10, 12, 1, 1, 13, 8, 6, 1, 13, 8, 8, 13, 1, 6, 8, 13, 1, 1, 0, 7, 0, 7, 0, 7, 2, 7, 0, 7, 0, 7, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


LINKS

Table of n, a(n) for n=0..119.
Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
Index entries for triangles and arrays related to Pascal's triangle


FORMULA

T(n, k) = binomial(n, k) (mod 14).
a(n) = A070696(A007318(n)).


EXAMPLE

Triangle begins:
1,
1, 1,
1, 2, 1,
1, 3, 3, 1,
1, 4, 6, 4, 1,
1, 5,10,10, 5, 1,
1, 6, 1, 6, 1, 6, 1,
1, 7, 7, 7, 7, 7, 7, 1,
1, 8, 0, 0, 0, 0, 0, 8, 1,
1, 9, 8, 0, 0, 0, 0, 8, 9, 1,
1,10, 3, 8, 0, 0, 0, 8, 3,10, 1,
...


MATHEMATICA

Mod[Flatten[Table[Binomial[n, k], {n, 0, 14}, {k, 0, n}]], 14]


CROSSREFS

Cf. A007318, A070696.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A214846 A061676 A180182 * A095145 A095144 A339359
Adjacent sequences: A275195 A275196 A275197 * A275199 A275200 A275201


KEYWORD

nonn,tabl


AUTHOR

Ilya Gutkovskiy, Aug 11 2016


STATUS

approved



