login
A095143
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 9.
17
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 1, 1, 5, 1, 1, 6, 6, 2, 6, 6, 1, 1, 7, 3, 8, 8, 3, 7, 1, 1, 8, 1, 2, 7, 2, 1, 8, 1, 1, 0, 0, 3, 0, 0, 3, 0, 0, 1, 1, 1, 0, 3, 3, 0, 3, 3, 0, 1, 1, 1, 2, 1, 3, 6, 3, 3, 6, 3, 1, 2, 1, 1, 3, 3, 4, 0, 0, 6, 0, 0, 4, 3, 3, 1, 1, 4, 6, 7, 4, 0, 6, 6, 0, 4, 7, 6, 4, 1
OFFSET
0,5
LINKS
James G. Huard, Blair K. Spearman and Kenneth S. Williams, Pascal's triangle (mod 9), Acta Arithmetica (1997), Volume: 78, Issue: 4, page 331-349.
FORMULA
T(i, j) = binomial(i, j) mod 9.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
1, 5, 1, 1, 5, 1;
1, 6, 6, 2, 6, 6, 1;
...
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 9]
CROSSREFS
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), (this sequence) (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A140280 A140586 A339379 * A242312 A140279 A096145
KEYWORD
easy,nonn,tabl
AUTHOR
Robert G. Wilson v, May 29 2004
STATUS
approved