

A095143


Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 9.


17



1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 1, 1, 5, 1, 1, 6, 6, 2, 6, 6, 1, 1, 7, 3, 8, 8, 3, 7, 1, 1, 8, 1, 2, 7, 2, 1, 8, 1, 1, 0, 0, 3, 0, 0, 3, 0, 0, 1, 1, 1, 0, 3, 3, 0, 3, 3, 0, 1, 1, 1, 2, 1, 3, 6, 3, 3, 6, 3, 1, 2, 1, 1, 3, 3, 4, 0, 0, 6, 0, 0, 4, 3, 3, 1, 1, 4, 6, 7, 4, 0, 6, 6, 0, 4, 7, 6, 4, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


LINKS

James G. Huard, Blair K. Spearman and Kenneth S. Williams, Pascal's triangle (mod 9), Acta Arithmetica (1997), Volume: 78, Issue: 4, page 331349.


FORMULA

T(i, j) = binomial(i, j) mod 9.


EXAMPLE

Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
1, 5, 1, 1, 5, 1;
1, 6, 6, 2, 6, 6, 1;
...


MATHEMATICA

Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 9]


CROSSREFS

Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A008975, A095144, A095145, A034932.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), (this sequence) (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).


KEYWORD



AUTHOR



STATUS

approved



