login
A034914
Odd primes p such that q=(k*p+1)/(p-k) is prime for some k.
2
3, 7, 13, 17, 23, 31, 41, 43, 47, 53, 67, 73, 79, 83, 113, 137, 139, 151, 157, 163, 173, 193, 227, 257, 293, 307, 317, 337, 349, 353, 379, 401, 419, 457, 463, 467, 479, 487, 499, 509, 541, 557, 577, 593, 599, 613, 617, 643, 653, 677, 691, 727, 733, 769
OFFSET
1,1
COMMENTS
Related to hyperperfect numbers of a certain form.
LINKS
J. S. McCranie, A study of hyperperfect numbers, J. Int. Seqs. Vol. 3 (2000) #P00.1.3.
EXAMPLE
7 and 43 are both terms since (6*7+1)/(7-6) = 43.
MAPLE
filter:= proc(p) local g, m, q;
if not isprime(p) then return false fi;
g:= p^2+1;
for m in select(`<`, numtheory:-divisors(g), p) do
q:= g/m-p;
if isprime(q) then return true fi;
od;
false
end proc:
select(filter, [seq(i, i=3..1000, 2)]); # Robert Israel, Oct 06 2020
PROG
(PARI) isok(p) = {for (k=1, p-1, my(q = (k*p+1)/(p-k)); if ((denominator(q)==1) && isprime(q), return (1)); ); }
lista(nn) = {forprime(p=3, nn, if (isok(p), print1(p, ", ")); ); } \\ Michel Marcus, Mar 11 2016
CROSSREFS
Cf. A034913.
Sequence in context: A288709 A040106 A191028 * A034913 A040148 A097957
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name edited by Michel Marcus, Mar 11 2016
STATUS
approved