login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097957
Primes p such that p divides 5^((p-1)/2) + 4^((p-1)/2).
3
3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 433, 443, 457, 463, 467, 487, 503, 523, 547, 557, 563, 577, 587
OFFSET
1,1
COMMENTS
Also odd primes congruent to {2, 3} mod 5, or primes with last digit 3 or 7. - Alexander Adamchuk, Nov 02 2006
5 is not a square mod p. - Michael Somos, Aug 15 2012
LINKS
FORMULA
a(n) = A003631(n-1). - Alexander Adamchuk, Nov 02 2006
EXAMPLE
5^3 + 4^3 = 7*27
MATHEMATICA
Select[Prime[Range[120]], Divisible[5^((#-1)/2)+4^((#-1)/2), #]&] (* Harvey P. Dale, Feb 25 2013 *)
PROG
(PARI) \s = +-1, d=diff ptopm1d2(n, x, d, s) = { forprime(p=3, n, p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0, print1(p", "))) }
(PARI) {a(n) = local( cnt, m ); if( n<1, return( 0 )); while( cnt < n, if( isprime( m++) && kronecker( 20, m )== -1, cnt++ )); m} /* Michael Somos, Aug 15 2012 */
CROSSREFS
Cf. A003631 = Primes congruent to {2, 3} mod 5.
Sequence in context: A034914 A034913 A040148 * A071774 A019403 A045422
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Sep 06 2004
EXTENSIONS
Definition clarified by Harvey P. Dale, Feb 25 2013
STATUS
approved