The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034917 Minimal determinant (negated) of n X n persymmetric matrix with entries {-1,0,+1}. 4
 1, 2, 4, 16, 48, 160, 576, 2304, 12288, 73728, 327680, 2097152 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A persymmetric (or Hankel) matrix has M[ i,j ] = M[ i-k,j+k ] for all i and j (matrix is constant along antidiagonals). Conjectures: These minimal determinant matrices have no zero entries; a(10) is 73728, a(11) = 327680 and a(12) = 2097152. - Jean-François Alcover, Dec 15 2017 LINKS Table of n, a(n) for n=1..12. EXAMPLE For n = 1, 2, 3 use the matrices: [ -1] [ -1 +1] [ +1 -1 +1] ..... [ +1 +1] [ -1 +1 +1] .............. [ +1 +1 +1] MATHEMATICA base = 3; (* base 3 is for matrix entries {-1, 0, 1}, base 2 is for {-1, 1} *) decode = Which[base == 2, 0 -> -1, base == 3, {0 -> -1, 1 -> 0, 2 -> 1}]; M[n_, k_] := Module[{row0, row}, row0 = PadLeft[IntegerDigits[k , base], 2 n-1] /. decode; row[i_] := RotateLeft[row0, i][[1 ;; n]]; Array[row, n]]; a[n_] := Module[{m0, d0, m, d, kmax}, {m0, d0} = {{}, Infinity}; kmax = base^(2 n - 1); Print["n = ", n, " kmax = ", kmax]; Do[m = M[n, k]; d = Det[m]; If[d < d0, Print[" k = ", k, " det = ", d]; {m0, d0} = {m, d}], {k, 0, kmax}]; Print["m0 = ", m0 // MatrixForm, " a(", n, ") = ", d0]; d0]; Array[a, 9] (* Jean-François Alcover, Dec 16 2017 *) CROSSREFS Cf. A034918, A034919, A034920, A034921. Sequence in context: A128903 A103435 A119000 * A215724 A003433 A153951 Adjacent sequences: A034914 A034915 A034916 * A034918 A034919 A034920 KEYWORD nonn,nice,more AUTHOR Fred Lunnon, Dec 11 1999 EXTENSIONS More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 08 2006 Previously conjectured a(10)-a(12) confirmed by Bert Dobbelaere, Jan 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 15:18 EDT 2024. Contains 371844 sequences. (Running on oeis4.)